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Received 7 December 1994 

Abstract. The theory of p-adic valued Gaussian and Feynman integration on infinite 
dimensional spaces is developed with the aid of the Albeverio and Hoegh-Krohn  approach^ 
based on the Fourier (or Laplace) uansfom, of the infinitedimensional distributions. Gaussian 
distributions cannot be realized as bounded p-adic valued measures and there is no difference 
between Gaussian and Feynman integrarion in this case. The free p-adic valued quantum field 
is realized in the space of Gaussian square integrable functions. 

1. Introduction 

Much interest in p-adic physics has arisen in connection with string theory 111. The pioneer 
aaicle by Volovich [2] generated a series of papers on p-adic string theory (see, for example, 
[3-91). However, there were problems with the physical interpretation of such a high level 
model as the p-adic string and hence simpler models such as p-adic quantum mechanics 
and field theory were investigated in [8-13]. 

The main ideology of p-adic physics is to create the foundations  of this physics in a 
similar way to that for standard real physics and then to return step by step to the p-adic 
string model by using the apparatus of p-adic quantum mechanics and field theory. 

There are two classes of p-adic physical models. The first type of model is based 
on complex valued wavefunctions with a p-adic argument, 'p : Q; -+ C, where Q p  
is the field of p-adic numbers (p-adic variables and a complex valued wavefunction); 
wavefunctions 'p : Q; + QP(m (where QP(~,k) is one of the quadratic extensions of 
Qp) ,  are considered in the second type of model. The complex valued p-adic quantum 
mechanics and field theory were developed by V l a d i i o v  and Volovich [lo, 111 (see aIso 
[g]). The p-adic valued p-adic quantum mechanics was studied in [12,13] and some results 
for p-adic valued quantum field theory were proposed in [14]. 

The role of Gaussian integrals on infinite-dimensional spaces in the real valued quantum 
field theory is well known (see, for example, [15-171). We also begin ow considerations 
from the theory of infinite-dimensional Gaussian integration in the p-adic case. In the 
present paper we study the representation of the p-adic valued quantum field in the space 
L2(S-,,du) of square integrable functions with respect to the p-adic valued Gaussian 
distribution v .  

Thii distribution is introduced with the aid of the theory of infinite-dimensional non- 
Archimedean~distributions [9]. This definition is very similar to the definition of the 

* This research was supported by the Alexander von Humboldt Foundation. 
t On leave from Moscow Institute of Electronic Engineering. 

0305-4470/95/092627+09$19,.50 @ 1995 IOP Publishing Ltd 2627 



2628 A Khrennikov 

Feynman path integral proposed by Albeverio and Hoegh-Krohn [18]. We integrate with 
respect to the Gaussian distribution Laplace transformations of the p-adic valued infinite- 
dimensional distributions in a way similar to that used to integratc the Fourier transforms 
of the bounded measures on Hilbert spaces in [IS] (some results from Feynman integration 
inside infinitedimensional theories of distributions are contained in the papers by Smolaynov 
et a[ [19-231 and, on the physical level, the definition of a Feynman integral without limiting 
procedure was proposed by De Witt-Morette 1241). 

Probably, it is a unique way to introduce the p-adic valued analogue of the Gaussian 
measure. It would be impossible to define this object as the bounded measure (this 
mathematical result was proved in [25]). We must also note that in the p-adic valued 
case there is no difference between Gaussian and Feynman integrals because the square 
root i = f l  E Qp for some prime numbers p (see, for example, [26,27]). In the same 
reasoning there is no difference between (-, +, +, +) and (+, +, +, +) spacetimes. The 
p-adic extension of the approach [I81 is probably a unique way of introducing a p-adic 
Feynman integral because there is no possibility of using, for example, a generalization of 
the original Feynman definition based on the limiting procedure, as there is also no Lebesgue 
measure on finite-dimensional p-adic spaces [26,271. 

2. Fields of p-adic numbers and their quadratic extensions 

It is known (see, for example, [26,271), that any norm on Q is equivalent to the usual 
absolute value or to a p-adic norm. The p-adic norm is defined in the following way. 
Let p be a prime number, p = 2 , 3 , 5 , .  ... Any non-zero rational number x can be 
represented in the form x = p'm/n,where m and n are integers that are not divisible by 
p .  Then the p-adic n o m  is (X I , ,  = p-' and (01, = 0. This norm satisfies the inequality 
In + ylP < max(lxlp, ly lp) ,  i.e. it is non-Archimedean [26,27]. The completion of Q with 
respect to the p-adic norm defines the p-adic number field Qp. Any p-adic number can be 
uniquely represented in the canonical series: 

(1) 
where aj = 0, 1, . . . , p - 1. This series converges in the p-adic norm because Ip"lp = p-". 

-" a = p a-,, +. . . + p-'a-1+ a0 + pat + .. . + pkak + . . . 
The p-adic exponential is defined by the series 

It is known [26,27] that the region of convergence of the exponential function is 

( x  E Qp : lxlp -= P'/('-~)}. 

The main problem in the p-adic case is the increase in l/ln!lp when n + 00. In this case 
the estimate l/In!l,, < p"/@'-l) holds and the exponential is not an entire analytic function 
in the p-adic case. It is analytic only on the ball with its centre at zero. 

The basis of p-adic valued quantum models is a p-adic Hilbert space (which was 
introduce in [9,12,13]). Let us recall the definition of p-adic Hilbert space. At first we 
must consider a p-adic analogue of complex numbers. As we. know the field of complex 
numbers C is the quadratic extension of B. In this case we have a very simple algebraic 
structure because this quadratic extension is, at the same time, the algebraic closure of the 
field of real numbers. In the p-adic case such a simple structure does not exist and there 
is no unique quadratic extension as in the real case. For p = 2 there are seven different 
quadratic extensions and for p j& 2 there are three different quadratic extensions. All these 
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quadratic extensions are not algebraically closed and extensions of any finite order are not 
algebraically closed. The algebraic closure of Qp is constructed as an infinite chain of 
extensions of finite orders. However, this algebraic closure is not a complete field so we 
must consider the completion of this field. This is the final step in this long procedure 
because this completion is an algebraically closed field. Let us denote this field by C,. In 
the mathematical literature this field is called the field of complex p-adic numbers but we 
shall not use C, as a field of complex p-adic numbers. As we know in usual quantum 
mechanics a major role is played by the automorphism * : C, + C,, z --f z*. The real 
number field is invariant under the action of this automorphism and so is the expression 
lz12 = zz* which is considered in quantum mechanics as a probability. This automorphism 
is connected with the charge of the quantum particle. The action of * changes the sign of 
the charge of the particle and, in quantum field theory, this automorphism corresponds to the 
process: particle 4 antiparticle. As the probability is an invariant of * there is a particle- 
antiparticle symmetry in quantum physics. That is why we need an analoguepf * in p-adic 
valued quantum mechanics. The simplest possibility in this direction is to use a quadratic 
extension of Q p  with an analogue of the automorphism of complex conjugation. Hence we 
will use quadratic extensions of Q, as the basis of our construction. There are a number 
of different quadratic extensions and there will be a number of different representations of 
the p-adic valued quantum mechanics. The next step in this direction is to consider the 
group {I ,  *] as the simplest Galois group and to generalize our construction to the case of 
an arbitrary Galois extension of Q p  (see [9, p 1201). However, it is currently impossible to 
use C, for the same considerations because the description of a group of automorphism of 
C,, is an unsolved mathematical problem. In addition this group is an infinite group and it 
would he impossible to Create an invariant which would be a generalization of zz'. 

Let us consider a quadratic equation x 2  - K = 0, K E Q,, which has no solution in 
Q,. Let us denote by Z, the quadratic extension e,(&) : z = x +&y, x ,  y E Q,, Z* = 
x - fiy, lzlz = zz* = x2 - KY' E Q,. The extension of the p-adic valuation to Z, is 
defined by lzl, = m. 
3. p-adic Hilbert space 

Let us consider a sequence A = (An), A, E Q,, An # 0. We denote by HA the space of 
sequences 

m 

f = ( fn)E1 : fn E Z. and If[: = lfn12An is a converging series in Q, 
i7=1 

Let us define on the space HA a generalization of an inner product: 

Let us set Ifl: =. (f, f). The basis vectors ej = (e:) = ($) are orthogonal vectors with 
respect to this inner product. 

Let us consider the non-Archimedean [27] norm defined by 

The space HA with this norm is a non-Archimedean Banach space and 

I(f, g)Alp 4 I l f l l A l k l l A .  
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We must note that the inner product in HA does not possess some of the usual properties 
of the standard complex inner product on usual Hilbert spaces. For example, there is no 
p-adic analogue of the inequality (f, f ) ~  > 0. We must also note that (f, f ) A  = lfl: = 0 
for some f E HA, f # 0. 

This is why we define an inner 'product on a linear space E over a field Z, as an 
arbitrary Hermitian bilinear form: (f. g) = (g, f)*. 

Let us consider a triple ( E ,  11.11. (. , .)) where E is a non-Archimedean Banach space with 
norm 11 . 11 and (. , .) is an inner product on E .  This triple is called [12,13,9] a Z,-Hilbert 
space if it is isomorphic to a canonical triple (HA,  [I . 111, (. , for some A E QF: 

I : E + H A  
IlIxllA llxll 
(1x9 Ix)A = ( x ,  y ) .  

In the same way we define Q,-Hilbert space using the spaces of Q,-sequences (we use 
the same symbols to denote these spaces). In particular, we need in the e,-Hilbert space 
12 = 12(Qp) of square summable p-adic sequences, h, = 1 for all n. p-adic Hilbert spaces 
which are not isomorphic to 12 exist. 

We also wish to discuss briefly the problem of the normalization of basis vectors ej in 
HA. We have = (el, e j )A j .  If all weight coefficients Aj are positive rational numbers, 
there is no problem in normalizing the basis vectors e j  in ordinary real (or complex) Hilbert 
space setting e:- = d/&. However, in the p-adic case it is also possible that &does 
not exist in the case of rational positive Aj:This  problem will arise in the .&-construction 
with respect to the Gaussian measure, where we cannot normalize the Hermitian polynomials 
ha(@) and need to use weight sequence h, = [ha[' = rr!Za. 

4. Distributions on infinite-dimensional p-adic spaces 

Let us denote by &, k E Z, the p-adic Hilbert space H($), so 

s k  (fi, .. . , fn, . . .) E QY : and lfl&y f 

I m 
= f,2p-k" is a converging series in Q, 

I 
n=l 

and, in particular, SO = 12. Let us use the symbol I] . Ilk for the norm on g. It is evident 
that 

. . . c s k c s k - I  c ' ' ~ c ~ ~ c ~ ~ ~ c ~ ~ k c ~ ~ ( ~ + 1 ) c ~ ~ ~  
with continuous embedding. Thus, we have a p-adic analogue of the concept of a nested 
Hilbert space. 

NOW let us introduce the spaces of sequences S, = ngo sk and S-, = UL-, sk .  
The space S, will be endowed with the projective topology S, = l i i k + o o  proj Sk and S-m 
is endowed with inductive one S-, = l i ik+-m ind S,. We need the following topological 
proposition: 
Theorem 4.1. The space Sk dual to S,  is isomorphic to S-,. 

Now we are interested in analytic functions on infinite dimensional p-adic spaces. 
Let E be a locally convex ZJinear space and {II. II,) be a system of non-Archimedean 

seminorms which define the topology on E 

U,,@ = ( x  6 E : IlXlla < PI 
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is the system of balls with its centre at the zero of E. These balls are simultaneously open 
and closed ('clopen'). 
Remark 4.1. The seminorm 11 . 11 is called a non-Archimedean seminorm (see [27]) if the 
strong triangle inequality is valid for it: 

Iln+Yll < ~ ~ l l X l l ~ I l Y l l l .  
Definition 4.1. A function F : U,,p + Z, is called an analytic function on this ball if it 
can be expanded into the power series: 

m 

F ( x )  = B,(x, . . . , x )  (2) 
"=O 

where Bn : E x . . . x E -+ Z, are continuous symmetric nilinear forms, and 

According to (3) the series (2) converges uniformly on the ball U,,,,. 
Let us denote by the symbol A (Ua.,,) the space of analytic functions on the ball 

A function F is called analytic at the zero if F E A(Uu,,,) for some 01 and p and F is 
called entire analytic if F E A(U,,,) for every 01 and p. Let us denote by Ao(E) the 
space of functions which are analytic at the zero and by A(E) the space of entire analytic 
functions.The first space is endowed with the inductive topology 

A@) = limindA(U,,,) 
4 P  

and the second one with the projective topology 
A ( E )  = limproj A(Ua,p). 

".P 

We will use the functional spaces Ao(S,) and A&,) as test function spaces on the 
sequence spaces S, and S-, respectively and the dual spaces A&?,) and A'(S-,) as 
spaces of distribution. 

Defylition 4.2. The Laplace transformation of the distribution p E A@,) is defined by the 
equality: 

L(k)W = (L expI(g, .)I) g E s-,. 
There is no problem in proving that exp[(g, .)} E A&,) for all g E S-,. 

R e m a r k 4 2 ~ A s  we noted in section 2 the p-adic exponential function is not an entire 
analytic function (it is defined only on a small ball with its centre at zero) and this is why 
we need in the theory of locally defined test functions. 

Theorem 4.2. The Laplace transformation is an isomorphism of the space of distributions 
Ab(&) and the space of test functions A(S-,). 

As we have a continuous linear operator L : Ab(&) + A&,) we can define the 
adjoint operator L' : A'(S-,) -+ Ao(S,). 

We will define the Gaussian distribution on the infinite dimensional p-adic space as a 
distribution belonging to A'(.&). Let b : S, x S, + Z, be a symmetric continuous 
bilinear form and a E S,. 
Definition 4.3. The Gaussian distribution vb,. with the covariance b and the mean value a 
is defined as an element of A'(S-,) with the L'-ransformation: 

&'(ub,a)(f) = exp(b(f,f)/2+(f7a)l. 
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Remark 4.3. There is a plus sign before the covariance form because we use the Laplace 
transformation. 

We define a generalized ub,,-integral with the aid of the equality (cf [18]): 

L- F(@)vb.a(d@) = (Vb.0. F) .  

5. The space of the square integrable functions with respect to the 
infinite-dimensional Gaussian distribution 

Now we are interested in the Gaussian distribution U : a = 0, b( f ,  f) = (f, f)/2 = 
(1/2) f ,  and we shall define the space Lz(S-,, du) of square integrable functions 
F : S-, + Z, with respect to v .  

Let us introduce on the functional space A(S-,) the inner product 

This is a continuous Hermitian bilinear form on A@-,). 
Let us denote by &(?)}E4 the system of usual Hermitian polynomials. It well known 

that the coefficients of these polynomials belong to the field of rational numbers and there is 
no problem in considering these polynomials as functions of the p-adic argument, t E Q,,. 
As usual we can consider the Hermitian polynomials he(@) on the infinite-dimensional 
space of sequences: 

ha(@) = h ~ , ( @ ~ ) . . . h ~ ~ ( @ ~ ) . . ,  

where a = (q, .  an,. . .), a, = 0,1,2, .  . . and la1 = E;, aj c CO. 

Proposition 5.1. The Hermitian polynomials [ha] are orthogonal with respect to the inner 
product (4): Is-, h,(@)hp(@) du (@) = 6,$.1'%! 

We cannot normalize the Hermitian polynomials in the p-adic case. 

Theorem 5.1. The system of Hermitian polynomials is a topological basis in the functional 
space. A(S-,). 

Using this theorem we obtain that every function F E A(S-,) can be expanded into the 
series 

where Fa = s,, F(@)h,(@)du (@)/Zl%! 

A&,) the non-Archimedean norm: 
Let us introduce on the space of test functions (of an infinite-dimensional argument) 

IIFII~ = ma= IFJ,J~~.I.'I,. 
Let us consider the completion of the space A (S-,) with respect to this norm. We denote 
this completion by the symbol Lz(S-,, du) and we call the elements of this space square 
integrable functions with respect to the Gaussian distribution U. It is a Z,-Hilbert space 
of the type H21.iU!. The inner product (4) is extended continuously from the space of test 
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functions A(S-,) to the space of square integrable functions LZ(S-,, du) and, in particular, 
for every function F E Lz(S-,, du) the integral 

is well defined. 
There is no problem in seeing that 

m 
Lz(S-,, du) = F($)  = Fah,(@) : the series (F ,  F )  I lUl=O 

01 I = IF,1221"1a! converge in ep . 

6. The representation of the canonical commutation relation in the space 
&(s-,, dv) 

We use the functional space L2(S-,, du) as the state space for a quantum system with an 
infinite number of p-adic degrees of freedom. As usual (see, for example, [15,16]) we 
define the field operators 

$fW) = (f, @)W) f E s,. (6) 
Then we can define the operators of the Gaussian momentum: 

@($)~= (h/&)D8F($) g E.S-m (7) 
where D,F(@) is the derivative of F($) in the direction g and h E Q p  (h can, in particular, 
be rational) is a parameter of quantization. Then [$,, ~ r ~ ]  = - h / G  as in the real case. 
We can define the number operator N in the Gaussian representation: 

where q = net, $j = and (e i }  is the standard Iz-basis. Then Nh,($) = Ialha($) and 
we can consider ha($) as pure states with 011 particles in state 1,012 particles in state 2, . . .. 

The interpretation of the quantum states with the aid of the number operator N is 
very useful to build a bridge between p-adic and real quantum fields formalisms. In both 
formalisms the sfates ha($) correspond to the presence of [IyI = 011 + 012 + . . . particles. 

The superposition principle is used in ordinary quantum field theory to introduce 
quantum states (5): 

which are (probably infinite) linear combinations of ha($). There is no problem in any 
physical application in using quantum states (5) with coefficients Fe = F.1 fiF.2, Faj E Q. 

(mod 4), then the square root i = ,/=i does not exist in Q, and we can 
choose Qp(i) as the quadratic extension of Q p .  In this case we have z = x + iy E Q p ( i ) ,  
Z = x - iy, lzlZ = x z  + y2. Now formula (7) coincides with the ordinary formula for the 
momentum. Let us consider the subspace Lf(Q, ,  du) of &(ep, du) consisting of functions 
(5) which have the Hermitian coefficients Fa = F: + iFd, where Fd E Q. The finite sums 
belong to Lz-spaces both in p-adic and ordinary real case. However, the space Lf(Q,,  du) 

If p # 1 
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contains infinite h e a r  combinations of Hermitian polynomials which do not belong to the 
ordinary Lz-space, hence the series (8) diverges. 

Hence the p-adic quantum fe ld  theory gives us the possibility of extending the 
superposition principle to realize new quanium states. 

For example, 

for every prime number p .  We can also realize much more 'terrible' quantum states: 

and so on. 

are still many more questions than answers. 
Our investigation is only the first step towards a p-adic quantum field theory and there 
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